DØ Layer 0 - innermost layer of Silicon Microstrip Tracker

- Existing DØ detector
- Motivations
- Design
- Performance
- Conclusions

Kazu Hanagaki / Fermilab

The DØ Detector

- Compact detector (tracker)
 - > Large acceptance

b-tag Performance

similar algorithm with similar fake

 Large acceptance as advertised

Motivations - radiation damage

Booster beam test results

new result using the existing detector at DØ

 Originally proposed to extend the lifetime of SMT (based on the booster test results)

Motivations - better resolution

- r@L1 = 2.7 cm → r@L0 = 1.6 cm : better impact parameter resolution
- More redundancy in pattern recognition for higher luminosity

Design

Where does LO go?

Clearance

- > outer radius ~23mm
- > inner radius ~15mm
- very tight!

Overview

- Super tight space constraint!
 - > readout chip outside the fiducial
 - cooling not enough
 - low mass
 - application of carbon fiber (CF) support structure as direct support of sensor
 - analog signal has to be transmit from sensor to readout

- Uses R&D and people invested to Run 2b which was cancelled at September 2003
- Goal: S/N > 10 after irradiation

Components

• 48 modules

- sensor, x2 analog cable, x2 SVX4 on BeO hybrid
 - ♦ 256 channel per module

Readout chain

- > digital jumper cable
- junction card: impedance matching
- > twisted pair cable
- > adaptor card
 - SVX4 voltage regulation
 - → differential (SVX4) → single ended (existing system)
 - regenerate clock
- Carbon fiber support
 - > attach to existing detector

Sensor

- Hamamatsu; AC-coupled, single-sided singlemetal p⁺ on n-bulk
 - > sustain high bias voltage (500V) for rad-hard
 - > beam test did not show any abnormal behavior
 - no junction break down up to 700V
 - depletion voltage as expected
- 71, 81 μm strip pitch
 w/intermediate strip
 - #readout strips = 256
- Length: 7 or 12 cm

SVX4 Chip

- DØ and CDF (Fermilab and LBL) developed new readout chip
 - > Successor of SVX2 and SVX3 chip
 - > 0.25 µm technology, rad-hard
 - > 128 inputs and 46+1 pipeline cells
 - > 8-bit ADC with sparsification
 - > 53 MHz readout, 106 MHz digitization
 - Programmable test pattern for calibrations, ADC ramp, preamp bandwidth
 - > Pinhole clamping
 - Real time pedestal subtraction (RTPS)
 - > 2.5 V, power measured to 0.3 W/chip

Pipeline

6.4mm

Output IC

The Big Challenge - Noise

 The most difficult challenge (in terms of electronics) in LO is to reduce noise

> Analog cable works as a "good" antenna

 With poor grounding scheme, the noise can be high as ADC overflow (255 ADC counts; 1MIP ~ 30 ADC counts)

Grounding

- Carbon fiber is a good conductor
 - > must be grounded
- Low inductance GND connection crucial
- Space between analog cable and carbon fiber support has to be maintained to avoid pickup

distance between analog

Some Tricks

- Carbon fiber cocured with flex circuit with copper trace to achieve better contact
- Ground pads at backplane of hybrid
- Wrap-around to connect sensor GND to support (as well as bias voltage to backplane)
- Mesh (to minimize capacitance) spacer between analog cables

Performance

Sensors

- Ordered 120 sensors
 - > only one bad (pin-hole) channel out of 120 x 256 = 30720 channels! (spec. 1%)
 - > very small leakage current
 - > depletion voltage almost identical for all sensors

SVX4 Chip

- Noise
 - > For fixed rise time (69ns): $ENC \cong 300 + 41C$ (2025e-@40pF)
- Radiation hardness
 - > No degradation up to at least ~20Mrad

Module Testing

- No pickup noise at all
- Testing includes
 - > burn-in
 - > gain & noise
 - > thermocycling between 20 and -20 °C

- 75 modules produced
 - > < 5 bad channels
 - > Current <1.5 μA @ 300V
 - > No pinholes
 - Have 1 good spare for each type

azu Hanaaaki

Assembly

- Module assembly and installation to support structure completed in August 1st
 - deflection ~0.027 mm over the sensor region
 - installation alignment2-3 μm
 - > all chips are working
 - outer radius measured and cofirmed to fit in

Noise

- Layer 0 ground has to be isolated to avoid possible grounding loop (no external pickup in common ground scheme)
 - > increase sensitivity to external pickup \rightarrow requires filtering for SVX4 power lines \rightarrow S/N~16

fast bandwidth settings to enhance noise

Final Weapon - RTPS

- Big redundancy
 - as long as coherent, external pickup can be suppressed by real time pedestal subtraction (RTPS)

fast bandwidth settings to enhance noise

With either RTPS or filtering of power lines, S/N can be ~16 at the nominal bandwidth setting

Installation

Multiple successful test insertions of a prototype in a mock-up of the DØ detector

Installation tool grabs Layer O prototype

Conclusions

- Layer 0 detector built to achieve better impact parameter resolution
- R&D and people for Run 2b were fully utilized
 - > rad-hard sensor
 - > analog cable technology
 - > advantage of using SVX4 over SVX2
- Very tight clearance
 - cleared severe mechanical constraints
 - > developed installation procedure
- Establish low noise system although its challenging design: S/N~16

Backup

Analog Cable

- Flex circuit fabricated by Dyconex (Switzerland): fine pitch (91µm) copper traces on Kapton substrate
- Length 20, 27, 34, 36 cm
- Small capacitance (0.4pF/cm) to reduce noise

5/N can be well above 10

23000 e / MIP

Readout in the Real System

- Two modules and two hybrids installed in DØ
 - > testing of readout with full DAQ system

SVX2 and SVX4 have different control sequence, power, data format \rightarrow train both online and offline software

Vertex2005 - Nov 07 2005

